
React
Performance
Optimization

rajatsaraswat.com/blog

1. Minimizing Re-renders with
React.memo()

React.memo() is a higher-order component that memoizes
the result of a component's rendering.

It skips the unnecessary re-renders if the component's props
remain the same.

MyComponent will only re-render if its props change. This can
help optimize performance our application.

2. Lazy Loading

Large bundle sizes can increase the initial loading time of your
application.

With React.lazy, you can lazily load components to improve
initial load times, which means the components are loaded
only when they are needed.

The Suspense component allows you to provide a fallback UI
while the component is being loaded.

3. React Virtualized

React Virtualized is a library for efficiently rendering large
lists.

It uses a windowing technique to render only the items that
are currently visible on the screen.

This reduces the memory usage and improves performance.

The useMemo hook lets you cache the result of a calculation

between re-renders.

 It's used to optimize performance by avoiding unnecessary re-

computation of expensive operations.

This example demonstrates how to optimize performance
by avoiding unnecessary re-computation.

4. Memoize Costly Computations with
useMemo

5. Code Splitting

Code splitting is a technique that allows you to split your
React application into smaller chunks, which are loaded on-
demand.

It helps reduce the initial bundle size and improves the
loading performance of your application.

.

With React.lazy(), you can dynamically import components,
and Suspense provides a fallback UI while the component is
being loaded.

6. Debouncing

Debouncing is a technique used to delay the execution of
a function until after a certain amount of time has passed
since the last invocation.

It is commonly used for handling expensive operations
triggered by user events, such as input changes or search
requests.

Let's take an example of a search input field. When a user
types in the search box, an event is triggered for every
keystroke.

Without debouncing, this can lead to excessive API calls
or unnecessary processing.

By debouncing the event handler, we can ensure that the
search function is called only after the user has finished
typing or paused for a specified duration.

Debouncing Example

we only wanna make the API calls to the server when the user
finishes typing their word and not on every input change.

7. Content Delivery Network
(CDN)

A CDN is a distributed network of servers located in
different geographical locations.

It serves as an intermediary between your web
application and its users, helping to optimize content
delivery and improve performance.

Reduced latency: With a CDN, content is served from
servers located closer to the user's geographical location.

Improved scalability: CDNs are designed to handle high
traffic volumes and distribute content across multiple
servers.

Bandwidth offloading: By offloading the delivery of static
assets, such as images, CSS files, and JavaScript files, to a
CDN, you can reduce the bandwidth usage on your web
servers. This frees up server resources.

8. Server-Side Rendering
 (SSR)

SSR is a technique where the initial rendering of a React
application is performed on the server, and the resulting
HTML is sent to the client.

It can improve the performance of your application by
sending a pre-rendered HTML page to the client, which
can be displayed quickly while the JavaScript bundle is
being loaded and executed.

Improved Performance: SSR can reduce the time-to-
content for users, as they receive a fully-rendered page
from the server

SEO Optimization: Search engines can crawl and index
the content of SSR pages more easily, as they receive the
complete HTML content upfront.

 Additionally, SSR may not be suitable for all types of
applications or use cases, particularly those that require
highly dynamic or interactive interfaces.

